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TECHNICAL NOTE XOG. 697

THE FREQUENCY OF TORSIONAL VIBRATION OF A TAPERED BEAK

By Robert P. Coleman
SUMMARY

A solution for the equation of torsional vidbration of
tavered beams has been found in terms of Bessel functions
for beams satisfying the following conditions: (a) The
cross sections along the span are similar in shape; and
(b) the torsional stiffness of a section can be expressed
as a power of a linear function of distance along the span.
The method of applying the analysis to actual cases has
been described. Charts are given from which numerical
values can be immediately obtained for most cases of prac-
tical imvportancs. The theoretical values of the frequency
ratio have been experimentally checked on five beams hav-
ing different amounts of taper.

INTRODUCTION

The frequency of torsional vibration of a uniform
beam can be calculaeted for a number of shapes of cross
section. (See references 1 and 2.) The corresponding
cases of tapered beams either have not been solved or are
not readily available. A special case of longitudinal
vibration of tapered beams treated by Nabl (reference 3)
is applicable also to torsion for a speclal cass (n = 2).
In the present paper, the analysis has been extended to
the case of tapersd beams subject to rather broad condil-~
tions, and a closed solution of the differential equation
of motion has been obtained in terms of Bessel functions.
The result is expressed in such & form that the effect of
teper is given independently of the effect of cross sec—
tion. Hencs, except for certain limitations imposed on
the solution of the differential equation, the frequency
of a tapered beam can be calculated if the solutien for
the corresponding uniform boam is known.
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SYMBOLS

angular displacement from eguilibrium,
rectangular coordinates in beam.

polar moment of inertia of section,
torsion modulus of gection.

shear modulus of material.

length of bean.

time.

density of material.

angular frequency (w = 2wf, where f 1is
in cycles per second).
angular frequency of a uniform beam,
o [ Gd
2t pip
torsion funection.
constants.
exponent in expression for variation of
torsion modulus along span (n = 2\ + 1).
(n - 1)/2.
semichord.
4/n
(=)
Co
3z
b
1w Ipp _ _1 L om
(1 - Ng) JG 1 - Mg wa 2

roots of equation (7).
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£ =n ¢,
InP
- B
B = JGe

n, number of mode.

JXCﬁ),Yx(ﬁ), Bessel functions of first and second king,
respechtively.

‘ Subscripts:
o, at root.

t, at tip.
ANATLYSIS

The differential equation for the motion of a section
of a beam in %torsional vibration (reference 1) is

%@ ) aeJ
I = — | GJ _— 1
o1y 33 = = [ () %8 (1)

where GJ 1s the torsional rigidity of the section. For
harmonic vibrations it ‘is known thatl

2

a3 8 a
= w (1) G
at®
Then
4 a8 a -
ie [Gq{z) dz] + puw IP 8 =0
or '
a2 - . I 2 9 .. .
__d.g+_]_._.£._d_._9_+________Ppw = 0 (2)
dz J dz 4z JG

The functions IP and J (reference 4) for a Prismatic
beam may be exXpressed in the form '
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o u/n (x® + %) ax &y
o op”
2 a . o o
(/Cyﬁ (x + y= + x 5y v ax) dx 4y

—
1l

J =
where ¢, the torsion function, depends upon the cross
gsection. This funetion is known for a number of shapes

of cross section. A few examples from references 5 and &
are given:

(a) Circle of radius r:

2y r8
=0, J=1I,= (mr®) >

(p) Ellipsée with semiaxes a and D:

2 _ 2 a2 1e
P = - & =20 xy, J = (mad) —0——

a® + b2 7 ( a? + Db
(¢) DRectangle with sides 2a and 2b:

(2n+l) mx

3 ~)n AchrL/ U2
o= —xy + 41° <§) ; (-)” siah 2b 4y L2041) my
™ n=o0 3 (2n+1) Tma 2b
(2n+1) cosh — 5
J = %f k ab®

where k has the values given by the following table.

a/b|1.00 {1.50 {1.75 |2.00 [2.50 |3.00 {4 6 8 10 &0

k 424 589f .642| .688| .748| .790| .B44| .E96| .92 <940 1

The torsion moduwlus, J, of a section of a tapered
beam is very nearly the same as that of a prismatic beam
having the same section. A comparison of the anzular de-
flections produced by a static torque in a conical shaft
as calculated by the exact theory (reference 7) and by in-
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tegrating the torsion modulus for a ceylindrical shaft
shows a discrepancy of the order of 1/6 tan® «, where «a
is the half angle of the cone. For a cone with tan o =
0.10, +the discrepancy is only G.17 percent. In the fol-
lowing analysise, thils distinction in the torsion modulus
has been ignored. '

The boundary conditions to be applled to the solution
of equation (2) will depend upon the method of support of
the beam., For the case of most interest in this paper, a
beam built in at =z = 0 and free at =z = 1, the boundary
conditions are:

at =z = 0, 8 =0
Q0
at z =1, 3z = 0

A solution of equation (2) has been found for the
case of tapered beans satisfying the following conditions:

(a) All cross sections along the span are similar in
shape.

() The torsion modulus J can be &xpressed as a
vower of a linear funection of position along the span.
Then, from condition (a), the ratio IP/J is & constant

along the span and ls equal to its value at the root sec-—

tion, IPO/JO' From condition (b),

J = J,(1 = Bz)® = J,N°

The torsion.modulus is proportional to the fourth power of
the linear dimensions. Hence, in terms of the semichord,

5 4
g (@)
Jo Co
. _&>4/n
Co
At the tip,
a/n
cg
Ny = (——. . (3)
5 o
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It may be noted that

Figure 1 shows a number of typical plan forms corre-
sponding to different wvalues of =»n. The upper half of
this figure can also be considered as a plot of semichord
against TN foar different values of =n.,  In this case T
increases from right to left. The following properties of
these curvesg are noted:

n
at N =1, —-dn——z
at N = 0, EEE%EQ = 0 wvhen n > 4

= ® when n < 4

In terms of ¢ and B, equation (2) can be written

1 4J 48 2 g2 42
- F = m= == +w 1 8 =0
at= T dt at P

For the case of a uniform beam (dJ/dat 0), equa-

tion (2) has the well-known soluticn
8 = C;, sin Bw 1 ¢ + Cz cos Bw L-ﬁ
The frequency.equation for a cantilejer beam is
cogs Bw 'l =0
Bwl = (2m~-1) 3
where m =1, 2, 3, ...

The lowest frequency is

W. = T
LYY
Equation (2) can then be written
a%6 . 1 aJ 46 =
8818548, (wa) 6=o0 (4)
at J at d w, 2
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Now
M=1-B1¢
1 -1 1 - TNy
B: =
¢ ; ¥
_ 1 =17
E"l-ﬂt
& _aan_ G- n) &
it an at ") 3m
After eguation (4) has been expressed in terms of T, it
becomes
T ' ST e
- a_ - n oy w T 8 =
(- m) dﬂ%+<l ") % ant Gz 0
Put
N - wnw -
1—ntw12'§ n £,
Then:
a%e n 48 :
—= + 7 5 +68=0 . (5)
at® ¢ at

SOLUTION OF DIFFERENTIAL EQUATION

A solution of equation (5) has been found in terms of
Besgel Ffunctions. Put '

6 = é% I (L)

Then equation (5) becomes

1 fa2se) ~ oA ag(t) An = A(A+L) } _
R e R G e I EK.

If N = (n - 1)/2, this equation reduces to Bessel's equa-

tion:
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a®I(t) 1 agce) AZ
——-———gdc——+—£d§ +<l—'§‘§>J(§)=o

Therefore J, ({) is & Bessel function of order A.

The complete solution containing two ardvitrary con-
stants to be determined by the boundary conditions is

6

é% [AJA(ﬁ) + BJ_A(ﬁ)J; A, nonintegral
(6)

D
li

f%.[A@\(g) + BYA(L) ]; X, integral J

The function Yp({) is a Bessei function of the second kind.

The boundary conditions in terms of { are:

Il

at z o, ¢t =128, 6=0

t, N

at %

nt’ §=n-}_—, gol%_%:O

After these conditions have been applied, the resulting
equations can be simplified by means of the relations for
Besgel functions:

-ﬁ;{?fn Jn(x)] =" g (x)

i
I

I
M
B
<y
/g\
S

4. n
ix [x Jn (x)] n-—1

The condition that the two equations for A and 3B have
solutions other than 4 =0, B = 0, is that the determi-
nant of the coefficients of A and B vanish:
J?\(QO) J—?\(QO) N
: = 0: A, nonintegral
J7\+1 (nt EO) "'J_)\_l(nt g0)
> (7)
IN <§o> R4N (go)

= 0; A, inftegral




N.A.G.A. Technical Note No. 697 9

This condition determines an admissible set of values of

o+ the roots of equation (7). These roots will be called

(r-

After the value or values of §0 that satisfy the

determinantal equation have been found, the shapes of the
deflection curves for the various modes can be directly
obtained from equation (6). At the root section, ¢ =

§o=§r’ 6=O,

0 = AJR(Qr) + BJ~A(§r); A, nonintegral
0 = A%\(Qr) + BYk(ﬁr); A, integral
Hence |
0 - f% [J%(g) - %%i%%ij J~R(§)] : A, mnonintegral
3 (8)
A F
8 = EX [J}\ (g) - E:—"(‘i-':_)‘ Yy\ (ﬁ) ] H A, integral

where ¢ determines position along the span.

Equation (7) is a transcendental eguation of which
the roots, §r, determine the frequencies of the various
modes. The squation cannot be solved explicitly but may
be solved indirectly. The roots may be obtained to any
desired accuracy by use of tables or by the graphical pro-
cedure of plotting the value of the detorminant against

o+ For each root there is a corresponding natural fre-

gquency of vibration given by
2
w=§r<‘1—nt>;w1

for the case of a pointed beam, esquations (7) can be
expressed 1in a simpler form. From the series expansion
for Bessel functions,

Ier (Mg ) (n, £ )2 A+) paa)

lim = lim Py
nt-—§0 J~A—l(nt§o) ﬂt—-eo 22( *1)

POv+2)

Hence, for pointed beams (ﬂt = 0), the first of equations
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(7) becomes
J7\+1<nt§o)
J_}\_,l ('ﬂt go)

(L) = = T () =0

When A 1is an integer, the same result is obtained:

M) m g e T B

(g ¢ MY m(ng £
A+1

=  1lim T (£,)

Ng—>0 2™ (1)1 A1 2

= 0
APPLICATION OF ANALYSIS

The preceding analysis can be immediately applied to
beams the forms of which are mathematically svecified by
values of n and TMNy. Nost beams, however, will not ex-
actly correspond to one of these cases; & method must
therefore be found for determining the best values of n
and TNy for the actuwal beam. An approximate method will
be illustrated for a wing the shape of which is given by a
drawing. Other methods, such as the method of least
squares, are also available for determining these paramo-
ters. The thicknosgs will be assumed %o vary in the sano
way os the plan form.

A sketch of a typical wing, together with a table of
dimensions, ig given in figure 2. It is required to rep-
roesont thig shape by an equation of the form

n/ 4
c = ¢,

The parameter T varies linearly along the span from a
value of Ty at the tip to 1 at the root. The procedure

is to assume arbitrarily a value of T, then to make a

logarithmic plot of chord or semichord against 7. Thisg
Process is repeated for different values of ﬂt until the
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value of T giving the best straight line is determined.

The slope of this line is the value of n/4. The third and
fourth columns of the table in figure 2 glve values of T
for the assumed values for Ty of O and O,1. Figure 3

is a logarithmic plot of chord against T. The points for
Ny = 0 fall nearly on a straight line. The slope of this
line is 0.37, which gives n = 4 X 0,37 = 1.48. The values
of ¢ recalculated from the equation

c = 0.96 N°+37 -
are gliven in the last column of the table in figure 2.

The frequency ratio, w/w,;, determined from the roots

of equation (7), is a funection of only two varlables, n
and T;. Figure 4 shows this ratio as a funetion of Ty

for several values of n. The actual frequency 1ls given by

w:(IDQ. a0 [ 4G
1 21 I’Dp

The frequency ratio fér pointed beams (T = 0) is given -
in figure 5 for several wvalues of n and for several modes.
For the wing previously descridbed (fig. 2), the freguency
ratio is 1.77. The shape of the deflection curve is shown
in figure 6 for several typical valuses of n and Mg

ZXPERIMENTAL RESULTS

Five duralumin beams (fig. 7) were constructed and
their frequencies were measured to check the theoretical
values of the frequency ratio. The central cross section
of each beam was a rectangle 6 inches wide and 1/4 inch
thick. The beams were geometrically similar in cross sec-—
tion along the span and had straight taper, the correspond-
ing values of TNy %being 1.00, 0.75, 0.50, 0.25, 0.00. It
is apparent from the boundary conditions that a freely sus-
Pended symmetrical beam vibrating in torsien with & node
at the center willl have the same frequencies as one built
in at the center. The preceding analysis may therefore be
applied to these beams.

The experimental values of the frequency ratio are
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plotted together with the theoretical curve for =n = 4 in
figure 8. The greatest discrevancy between expveriment and
theory is 2 percent, which is consgidered to be within the
limit of accuracy determined by the machining of the beams
and the measurements of the frequency.

CONCLUSIONS

The results of the tests of five beams showed that
the assumptions underlying the equation of torsional vi-
bration of a tapered beam

g e 3 36
pIp a-_é-a— = -a"z [G’J(Z) 3z

are Justifiable for all practical purposes. The frequency
ratio for even the most tapered case agreed with the theory
to within the experimental error.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., January 23, 1939,
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Figure 2.- Plan of a typical wing.
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Fig. 8
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